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Abstract

In the recent time the amount of semantic data publicly available
online grows continuously. This data is a valuable source of information
that can be inferred by means of different technologies. Apart of rea-
soning on data semantics classical OLAP or probabilistic data mining
techniques can be applied for pattern recognition, prediction or clus-
tering. However the conversion of linked (open) data basically stored
as RDF triples to data structures appropriate for data mining, such as
propositional representations or flat tables, appears to be a challenging
task. In this paper we propose an approach addressing this task. The
approach has been implemented in form of an operator for the Rapid-
Miner software, a data mining environment widely used in the industry
and research.

1 Introduction

The idea to close the gap between two technologies for data analysis, i.e. on-
tology based inference on the one hand and data mining on the other hand,
wins interest of scientists increasingly. While the statistical methods com-
prised under the umbrella term “data mining” are known since decades, the
birth of so called semantic technologies embracing ontology-based knowledge
representation and inference is connected with the paper of Gruber [2]. This
paper was published in 1995 and introduces the term ontology in the knowledge
representation context related to engineering sciences.



One year later Fayyad et al. [1] brought both terms together. However,
ontologies are only mentioned in the concluding part of this paper as a per-
spective technology “allowing the use of prior human knowledge about the
underlying process by the KDD1 system”. One of the first attempts to inte-
grate ontology-based knowledge representation into the data mining process
has been presented two years later by Simeon & Maher [13]. In their ap-
plication case an ontology provided “context, structure and relationships for
representation and integration of discovered patterns” to be identified in mul-
timedia data related to the domain of building design.

In recent time the interdisciplinary research on the edge of data mining
and ontology-based inference has been progressing significantly. One of the
reasons for this progress is doubtless substantial growth of the Linked Open
Data cloud [5]. This data is basically stored in RDF format and accessible
over numerous SPARQL endpoints. In this connection a challenging task is
to query the RDF data and to convert it to structures and formats which
can be processed by data mining tools. The approach described in this paper
is addressing this task. In particular it targets the retrieval and integration
of RDF data into the processes designed using RapidMiner, a data mining
environment widely used in the industry and research.

The paper is structured as following: In the section 2 it gives an overview
of approaches related to the proposed one. Section 3 contains the technical de-
scription of the work done. Finally the section 4 describes conclusions and new
challenges related to the preprocessing of RDF data for data mining purposes.

2 Related Work

In spite of the high interest of the scientific community and strong demand
in various application domains, currently there exist not many practically ap-
plicable approaches targeting querying of RDF data sources and transforming
query answers into formats required by data mining processes, e.g. by Rapid-
Miner processes.

One of these approaches, RMonto [8,9,11], is an extension for RapidMiner.
RMonto facilitates accessing semantic data and its further processing using
machine learning algorithms. Since the data isn’t transformed into the internal
data format of RapidMiner this approach is more similar to semantic data
mining [4]. Due to differences in data formats numerous data mining operators
available in RapidMiner cannot be combined with RMonto. Therefore the
existing operators have to be adapted or new operators have to be developed

1KDD stands for Knowledge Discovery in Databases that is roughly spoken a compre-
hensive process comprising apart of data analysis e.g. by data mining, data selection and
data transformation of data as well as interpretation of analysis results. Though, in the
recent time terms KDD and data mining in colloquial language are often used as synonyms.



in order to facilitate sophisticated data mining processes basing on RMonto,
that is a significant limitation of the approach.

Another approach called rapidminer-semweb has been developed by Khan
et al. [3,10]. The implementation in form of a RapidMiner operator is available
online. Though, this approach is strongly related to the task of RDF data
retrieval, it is, unfortunately, not mature enough to be applied in practice.
Our evaluation of this operator has shown that both methods i) RDF file
access, i.e. loading of RDF files from a local directory as well as ii) sending
requests to SPARQL endpoints ended up with an error.

The third approach implemented by Paulheim & Frnkranz [7] rather fo-
cuses on enrichment of statistical data with ontology based “semantic” meta-
data available online, e.g. within the Linked Open Data cloud. However such
metadata isn’t used as immediate input for data mining processes. Therefore
this approach doesn’t address the task of RDF data retrieval directly.

Since this survey of available technologies did not deliver any satisfying
results the demand on development of software making the RDF data avail-
able for a data mining processes in particular for processes developed in the
RapidMiner environment is evident.

3 Technical Description

The RapidMiner operator proposed in this paper has been developed to query
RDF data sources accessible over SPARQL endpoints and to transform the
query answers into proprietary RapidMiner format “understandable” for all
other operators available in the RapidMiner environment.

The operator has three parameters (Figure 1). The first one specifies the
URL of the SPARQL endpoint that has to be queried. The second parameter
contains the SPARQL query itself and the third one is to specify variables of
the SPARQL query that have to be interpreted as polynominals.

Figure 1: Input parameters for the RDF retrieval operator

To query more than one SPARQL endpoints a federation engine like ELITE
[6] can be used. Another option for querying multiple data sources simul-
taneously is to use SPARQL 1.1’s federated queries [14]. Since in practice,
formulation of SPARQL queries is a sophisticated process and most of data
mining experts aren’t expected to have sufficient experience in this field, we



have developed an assistance tool to support non-ontology experts to formu-
late a SPARQL query. The goal of this tool is to identify data properties of
the ontology, which contain the data required to carry out the data mining
processes. To do so, the tool displays the ontology structure in a user-friendly
manner enabling users to navigate through the ontology classes and properties.

Assume that the TBox of an ontology contains the following statements
(namespace specifications are omitted):

∃hasBuildingGeometry v Building (1)
∃hasBuildingGeometry v BuildingGeometry

∃hasNumberOfCompleteStoreys v BuildingGeometry

∃hasNumberOfCompleteStoreys v NumberOfCompleteStoreys

∃numberOfCompleteStoreysValue v NumberOfCompleteStoreys

Range(numberOfCompleteStoreysValue) ≡ xsd:integer

∃hasNumberOfRooms v BuildingGeometry

∃hasNumberOfRooms v NumberOfRooms

∃numberOfRoomsValue v NumberOfRooms

Range(numberOfRoomsValue ) ≡ xsd:integer

∃hasGroundFloor v BuildingGeometry

∃hasGroundFloor v GroundFloor

∃hasGroundFloorArea v GroundFloor

∃hasGroundFloorArea v GroundFloorArea

∃groundFloorAreaValue v GroundFloorArea

Range(groundFloorAreaValue) ≡ xsd:decimal

∃hasGroundFloorHeight v BuildingGeometry

∃hasGroundFloorHeight v GroundFloor

∃groundFloorHeightValue v GroundFloorHeight

Range(groundFloorHeightValue) ≡ xsd:decimal

To formulate a query the user begins with determining of a concept by typ-
ing its name for instance “Building” in the input box (Figure 2). To support
the user, a suggest feature has been implemented as a drop-down list which is
activated while the user is typing the input. The drop-down list is filled with
ontology concept names that match the user’s input. The user can select one of
the matches to retrieve its object properties which are shown in brackets (see
Figure 2 below). When the user selects a concept name its annotations prop-
erties (e.g. descriptions, comments, and references) are shown. In Turn each
object property of the selected concept can be selected to demonstrate prop-
erty’s ranges (ontology concepts). When selecting the latter one the user gets
demonstrated object and data properties of the selected range concept. For ex-
ample, when the class BuildingGeometry is in focus its properties are shown,
among others NumberOfCompleteStoreys, NumberOfRooms, or GroundFloor.
By clicking one of these object properties, their ranges and further the object
properties of that ranges user can navigate through the whole ontology.



Figure 2: Query generation tool

Moreover the user also can select data properties by activating the corre-
sponding check boxes. The selected data properties are used to generate a
SPARQL query. The tool records the paths that the user has been followed
by selecting object properties and their ranges. In particular, this path is used
to generate the SELECT and WHERE clauses of the SPARQL query. Finally,
the generated query is submitted to the SPARQL endpoint by means of the
RapidMiner operator described in this paper to retrieve the desired data.

A SPARQL query to get the data related to the ontology part shown in (1)
looks like the following (in the query namespace specifications are omitted):

SELECT ?Building ?numberCSValue ?numberOfRoomsValue (2)
?GFAreaValue ?GFHeightValue

WHERE {
?Building :type :Building .

?Building :hasBuildingGeometry ?BuildingGeometry .

?BuildingGeometry :hasNumberOfCompleteStoreys ?NumberCS .

?NumberCS :numberOfCompleteStoreysValue ?numberCSValue .

?BuildingGeometry :hasNumberOfRooms ?NumberOfRooms .

?NumberOfRooms :numberOfRoomsValue ?numberOfRoomsValue .

?BuildingGeometry :hasGroundFloor ?GroundFloor .

?GroundFloor :hasGroundFloorArea ?GFArea .

?GFArea :groundFloorAreaValue ?GFAreaValue .

?GroundFloor :hasGroundFloorHeight ?GFHeight .

?GFHeight :groundFloorHeightValue ?GFHeightValue .

}



After a query has been evaluated by a SPARQL endpoint and the evalua-
tion result has been retrieved, it is transformed into the internal representation
of RapidMiner. The data type of each result variable is analyzed and trans-
formed into the corresponding RapidMiner type. For instance Boolean vari-
ables are transformed into binominals and URIs of individuals are transformed
into strings.

Since polynominal variables can’t be identified on the basis of the RDF
data type analysis, additional information is required to solve this issue. To
identify polynominal variables we use the semantics of data, i.e. particular
conceptualization aspects expressed over the ontology’s TBox. For this pur-
pose, we have defined a special ontology concept that subsumes all concepts
whose individual’s URIs should be converted to polynomial variables. Identi-
fied polynominals are delivered to the operator using the appropriated operator
parameter.

The meta data and the data itself which is received by execution of the
SPARQL query mentioned above and transformed into the internal represen-
tation of RapidMiner is depicted in Figure 3.

Figure 3: Retrieved data transformed in RapidMiner representation format

Having the data transformed into the internal representation of Rapid-
Miner, the data can be further processed with conventional operators.

To avoid recurrent execution of SPARQL queries, which may be time con-
suming, we store the query results in a database (Figure 4, Part A). Doing so,
the data retrieved from the RDF sources previously can be simply reloaded
and processed (Figure 4, Part B).



Figure 4: RapidMiner processes to retrieve RDF data and store as well as load
the transformed data into a database

4 Conclusion and Further Work

In this paper we have described a RapidMiner operator for retrieval of RDF
data distributed in sources exposing a SPARQL endpoint. After retrieving
data in RDF format the operator transforms it into the internal RapidMiner
representation and so facilitates processing of this data by means of other
operators available in the RapidMiner environment.

The described operator has been successfully implemented and is now ap-
plied in data mining processes for retrieval of data related to the scope of
SEMANCO project (http://semanco-project.eu) focusing on carbon re-
duction in urban planning.

In our future work we purpose to integrate the tools for query generation
and ontology analyses mentioned above in the described RapidMiner operator
described in this paper.

Furthermore, apart of probabilistic data mining techniques we plan to fa-
cilitate data processing using OLAP technologies. To do so issues related to
data mart generations need to be addressed, e.g. through exploiting formally
specified data semantics for the automation of data cube design, in particular
tackling such challenges as selection and combination of data cube dimensions
or summarizability problem as already shown by Romero & Abelló [12].
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